AXIS Imaging Interview: Four Options for Image-Display Architecture: A Deep Dive

How diagnostic images get from server hard drives to the screen is a topic of great interest to both industry and buyers of imaging IT solutions. Speed of image access is critical for quality of service and care, along with productivity and user satisfaction.

Different solutions take different approaches to optimize image delivery over varying networks. Many solutions combine more than one software design method to achieve the best possible performance. In many cases, industry or buyers will use jargon, like “streaming”, to apply a simple term to these sometimes complex technical methods.

In a recent article by AXIS Imaging, I describe four common techniques that are used in (and occasionally between) different imaging IT systems to maximize image display speed. The article length limit prevented coverage of additional methods and intentionally excluded IT infrastructure optimizations (for example, faster networks, CPUs, and drives) and the use of irreversible lossy image compression of the images on disk.

Important Article Corrections

Although I followed up with the author about some transcription errors they made in preparing the article language, they were not corrected (at least at the time of posting this), so I am going to note some corrections here.

  1. Where the article states “…radiology practices and departments have options when designing high-speed image display…”, it should state “…radiology practices and departments have options when choosing the solution for high-speed image display…”. Radiology practices choose a solution and that solution will use one or more of the design methods (or additional ones not listed), but the Radiologists don’t choose the methods within the solution.
  2. In subsection #3, the second bullet refers to a condition where pre-caching is typically not possible (the article states the opposite). If the worklist is a separate application from the image display application, the image display application often has no method of knowing which exams listed are in the worklist, so is unable to pre-cache the images to the workstation. This is not always true, as some worklist applications can expose this information to the image display application through an API, but this is not a universally available capability and does require that a specific integration be developed to support this across the applications.
  3. In subsection #4, where it states “visual design infrastructure”, it should instead state “virtual desktop infrastructure”. People commonly refer to it as VDI.

The State of RIS Today

A lot of attention is paid to imaging IT systems, like PACS and VNAs, and EMRs these days, but Radiology Information Systems (RIS) play a very important role in the success of the Radiology service line within an enterprise.

The industry and market for RIS has changed a lot since their introduction, with two core markets (with different needs) evolving.

I recently wrote an article for HealthCare Business News, titled A tale of two kinds of RIS solutions, on the subject. The article is here.

AXIS Imaging Interview: Three Tips for Setting Up Remote Reading for Radiologists

Remote reading is a hot topic for many working in diagnostic imaging. It is highly desirable for many Radiologists who want to telecommute like the rest of us. And, as cloud-based imaging IT solutions become more popular, the ability to read remotely (Rads won’t be going to the data center to read) will become the standard.

AXIS Imaging interviewed me to get three tips on setting up remote reading for radiologists. The article is here.

MIIT 2019 – An Overview

On Friday, May 10, I once again have the pleasure of co-chairing the Medical Imaging Informatics and Teleradiology (MIIT) conference at Liuna Station in Hamilton, ON.

The program for the 14th annual MIIT meeting is stellar, we have a record number of sponsors, and—thanks to lower registration fees and new group discounts—many people are already signed up to attend.

Program Highlights:

  • AI Strategy of CARRoger Tam will enlighten us on the Canadian Association of Radiologists’ strategy for AI.
  • Cloud Services for Machine Learning and Analytics – Patrick Kling will reveal how cloud-based solutions can address the challenge of managing large volumes of data.
  • Patient-Centered Radiology – Dr. Tessa Cook (@asset25)will provide insight into their progress on this topic at UPenn.
  • Collecting Data to Facilitate Change – Dr. Alex Towbin of Cincinnati Children’s Hospital (@CincyKidsRad) will show us how to use data to support change management.
  • Panel on the Future of DIRs in Canada – In this interactive session, we will discover what has been accomplished with Diagnostic Imaging Repositories (DIRs) in Ontario, and what’s next. I will moderate a panel with leaders from SWODIN and HDIRS.
  • Practical Guide to making AI a Reality – Brad Genereaux (@IntegratorBrad), with broad experience working in hospitals, industry, standards committees, and technology, will help attendees prepare for this new area.
  • Healthcare IT Standards – Kevin O’Donnell, a veteran of healthcare standards development and MIIT, will provide an overview of developments within the DICOM and HL7 standards, and IHE.
  • ClinicalConnect – Dale Anderson will provide an update on this application (@ClinicalConnect), used by many organizations in the local region.

If you can attend, I am sure you will find the event educational. There are lots of opportunities to interact with our speakers and sponsors. If you are not from the region, you may find a weekend getaway to the nearby Niagara on the Lake wine region enjoyable.

And don’t forget to follow MIIT (@MIIT_Canada) on Twitter!

Enterprise Insight in Today’s Consolidated Enterprise

As health systems acquire or partner with previously independent facilities to form Consolidated Enterprises, and implement a Shared Electronic Medical Record (EMR) system, they often consolidate legacy diagnostic imaging IT systems to a shared solution. Facilities, data centers, identity management, networking equipment, interface engines, and other IT infrastructure and communications components are also often consolidated and managed centrally. Often, a program to capture and manage clinical imaging records follows.

Whether the health system deploys a Vendor Neutral Archive (VNA), an Enterprise PACS, or a combination of both, some investment is made to reduce the overall number of imaging IT systems installed and the number of interfaces to maintain. An enterprise-wide radiation dose monitoring solution may also be implemented.

While much has been written on strategies to achieve this type of shared, integrated, enterprise-wide imaging IT solution, there are several other opportunities for improvement beyond this vision.

In addition to imaging and information record management systems, enterprise-wide solutions for system monitoring, audit record management, and data analytics can also provide significant value.

Systems Monitoring

Organizations often have some form of enterprise-level host monitoring solution, which provides basic information on the operational status of the computers, operating systems and (sometimes) databases. However, even when the hosts are operating normally, there are many conditions that can cause a solution or workflow to be impeded.

In imaging, there are many transaction dependencies that, if they are not all working as expected, can cause workflow to be delayed or disabled. Often, troubleshooting these workflow issues can be a challenge, especially in a high-transaction enterprise.

Having a solution that monitors all the involved systems and the transactions between them can help detect, prevent, and correct workflow issues.

Audit Record Management

Many jurisdictions have laws and regulations that require a comprehensive audit trail to be made available on demand. Typically, this audit trail provides a time-stamped record of all accesses and changes to a patient’s record, including their medical images, indexed by the users and systems involved.

Generating this audit trail from the myriad of logs in each involved system, each with its own record format and schema, can be a costly manual effort.

The Audit Trail and Node Authentication integration profile (ATNA), part of Integrating the Healthcare Enterprise (IHE), provides a framework for publishing, storing, and indexing audit records from different systems. It defines triggering events, along with a record format, and communication protocol.

Enterprises are encouraged to look for systems that support the appropriate actors in the ATNA integration profiles during procurement of new IT systems and equipment. Implementing an Audit Record Repository with tools that make audit trail generation easy is also important.

Data Analytics

Capturing and analyzing operational data is key to identifying issues and trends. As each system generates logs in different formats and using different methods, it often takes significant effort to normalize data records to get reliable analytics reports.

Periodic (for example, daily, weekly, or monthly) reports, common in imaging departments for decades, are often not considered enough in today’s on-demand, real-time world. Interactive dashboards that allow stakeholders to examine the data through different “lenses”, by changing the query parameters, are increasingly being implemented.

Getting reliable analytics results using data from both information (for example, the EMR and RIS) and imaging (for example, modalities, PACS, VNA, and Viewers) systems often requires significant effort, tools to extract/transform/load (ETL) the data, and a deep understanding of the “meaning” of the data.

Enterprise Insight

Implementing solutions that continuously and efficiently manage the health of your systems, the records accessed, and operational metrics are important aspects in today’s Consolidated Enterprise. Evaluating any new system as to their ability to integrate with, and provide information to, these systems is recommended.

Imaging Exam Acquisition and Quality Control (QC) Workflow in Today’s Consolidated Enterprise – Part 2 of 2

In my previous post, I discussed common challenges associated with the imaging exam acquisition workflows performed by Technologists (Tech Workflow) that many healthcare provider organizations face today.

In this post, we will explore imaging record Quality Control (QC) workflow.

Background

A typical Consolidated Enterprise is a healthcare provider organization consisting of multiple hospitals/facilities that often share a single instance of EMR/RIS and Image Manager/Archive (IM/A) systems, such as PACS or VNA. The consolidation journey is complex and requires careful planning that relies on a comprehensive approach towards a solution and interoperability architectures.

An Imaging Informatics team supporting a Consolidated Enterprise typically consists of PACS Admin and Imaging Analyst roles supporting one or more member-facilities.

Imaging Record Quality Control (QC) Workflows

To ensure the quality (completeness, consistency, correctness) of imaging records, providers rely on automatic workflows (such as validation by the IM/A system of the received DICOM study information against the corresponding HL7 patient and order information) and manual workflows performed either by Technologists during the Tech Workflow or by Imaging Informatics team members post-exam acquisition. Automatic updates of Patient and Procedure information are achieved through HL7 integration between EMR/RIS and the IM/A.

Typical manual QC activities include the following:

  • Individual Image Corrections (for example, correction of a wrong laterality marker)
  • DICOM Header Updates (for example, an update of the Study Description DICOM attribute)
  • Patient Update (moving a complete DICOM study from one patient record to another)
  • Study Merge (moving some, or all, of the DICOM objects from the “merged from” study to the “merged to” study)
  • Study Split (moving some of the DICOM objects/series from the “split from” study to the “split to” study)
  • Study Object Deletion (deletion of one or more objects/series from a study)

QC Workflow Challenges

Access Control Policy

One of the key challenges related to ensuring the quality of imaging records across large health system enterprises is determining who is qualified and authorized to perform QC activities. A common approach is to provide data control and correction tools to staff from the site where the imaging exam was acquired, since they are either aware of the context of an error or can easily get it from the interaction with the local clinical staff, systems, or the patient themselves. With such an approach, local staff can access only data acquired at sites to which they are assigned to comply with patient privacy policies and prevent any accidental updates to another site’s records. The following diagram illustrates this approach.

QC-1

Systems Responsibilities

Another important area of consideration is to determine which enterprise system should be the “source of truth” for Imaging QC workflows when there are multiple Image Manager/Archives. Consider the following common Imaging IT architecture, where multiple facilities share both PACS and VNA applications. In this scenario, the PACS maintains a local DICOM image cache while the VNA provides the long-term image archive. Both systems provide QC tools that allow authorized users to update the structure or content of imaging records.

QC-2

Since DICOM studies stored in the PACS cache also exist in the VNA, any changes resulting from QC activity performed in one of these systems must be communicated to the other to ensure that both systems are in sync. This gets more complicated when many systems storing DICOM data are involved.

Integrating the Healthcare Enterprise (IHE) developed the “Imaging Object Change Management (IOCM)” integration profile, which provides technical details regarding how to best propagate imaging record changes among multiple systems.

To minimize the complexity associated with the synchronization of imaging record changes, it is usually a good idea to appoint one system to be the “source of truth”. Although bidirectional (from PACS to VNA or from VNA to PACS) updates are technically possible, the complexity of managing and troubleshooting such integration while ensuring good data quality practices can be significant.

The Takeaway

Often the QC Workflow is not discussed in depth during the procurement phase of a new PACS or VNA. The result: The ability of the Vendor of Choice’s (VOC) solution to provide robust, reliable, and user-friendly QC tools, while ensuring compliance with access control rules across multiple sites, is not fully assessed. Practice shows that vendors vary significantly in these functional areas and their capabilities should be closely evaluated as part of any procurement process.