Article – The Healing Power of Your Own Medical Records

This NYT article tells the story of a very bright young man that took control over has health data and probably saved his own life. Few of us have the knowledge to do what he did, but most would agree that having the choice to access our health data is the right approach.

I suspect that as long as the risk of uninformed patients misusing the information they access and the risk of unauthorized access of protected health information outweigh the demand for access to the information, progress will be limited. How do we balance freedom of information and data liquidity with effective access controls and reasonable assignment of liability?

Previously, I blogged about my thoughts on patient privacy and its use as an excuse for an non-interoperable patient record.

What can Enterprise Imaging Learn from Radiology?

Radiology Information Interoperability for Productivity and Quality

In the early days of Radiology, data entry errors by Radiology Technologists (aka Techs) were common. Their attention was on the patient and the operation of the modality, not the clerical task of typing in data, after all. To address this, something called a DICOM Modality Worklist (aka DMWL) was developed and adopted.

Essentially, this took the textual patient and imaging procedure order information entered into the HIS or RIS (i.e. the order placer), and sent it to some system as an HL7 ORM message (an order). The structured patient/order information was then provided to modalities using the DICOM protocol (because this is the language they speak). DMWL could be provided by the RIS or PACS or some form of broker system that spoke both HL7 and DICOM.

This allowed trained clerical workers (or physicians), combined with software that validated the data entered (where it could), to pass the information to the modality workstation where it could be mapped into DICOM objects, without having to ask Techs to enter this info. The productivity and information quality gains were significant.

It is worth noting that the order provides other value than just eliminating duplicate data entry. It represents a work instruction, and it is used in scheduling and billing. Where image acquisition is not scheduled or billed for, orders are typically not created.

Enter Enterprise Imaging

As we enter the era of Enterprise Imaging, there are lots of lessons that we can learn from the solved problems in areas like Radiology.

For example, when capturing a photo in a Wound Care clinic, it has to be associated with the correct patient (obviously), but there is likely other pertinent info that should be captured, such as the anatomical region imaged and any observations by the physician.

In Enterprise Imaging, orders are often not placed. In many areas, the imaging is often not the primary task, but one that used to support clinical work.

If orders are not placed, how can we at least provide the benefit of passing textual patient data to the image capture device or application to reliably associate patient (and perhaps encounter or procedure) data?

Even if orders are placed, most of the devices and applications used in Enterprise Imaging cannot accept an HL7 message and do not speak DICOM. Some form of broker would likely be required yet again.

Enterprise Information Interoperability for Enterprise Image Capture

One hope that we have is the adoption of the new HL7 FHIR standard. Based on REST-based API design methods, it is much easier to integrate with different devices (especially mobile devices) than HL7 v2.x messaging and DICOM interfaces are. Other methods used are to generate a URL from the EMR, with all the info provided in parameters, that launches the image capture application/device in context. Another method is to use HL7 messaging to populate the VNA database with patient, encounter and order/procedure information (essentially a copy of what the EMR has), and use a tool or API (perhaps the DICOMweb™ Query API, QIDO-RS) to query this system to get the necessary information.

Don’t Forget the Metadata and Supporting Information

This still leaves the issue of how to reliably and consistently capture the information that goes with the image(s)—notes, anatomy info, findings, technical exam info, observations, etc. In DICOM, when this type of information is needed, a SOP Class is defined. The header of the SOP Class object specifies where all this metadata should go. This is one of the primary principles of interoperability: a defined format and data scheme, with a clear and shared meaning.

Assuming that not all Enterprise Images will be generated in, or converted into, DICOM format, the definition of the metadata schema may be left to be defined by the implementing vendor.

In addition to the clinical and technical data, sooner or later, someone is going to be looking for operational data for use in analytics and process improvement, so it will need to be captured (on some level of detail), as well.

Consistent Terms

And, even when we have a common schema, if the terms used within the scheme are not consistent, we end up spending an enormous amount of time doing mappings or integrating terminology services (and even then, never fully addressing all cases).

To Acquire or Not to Acquire

If we think about Enterprise Imaging that is not “ordered”, what triggers the acquisition of an Enterprise Image? Is it up to the clinic or individual care provider to make the judgement? Should a published set of best practices define this? Would the EMR have logic, based on the patient’s condition or care pathway, to prompt or force the user to acquire and store the image(s)?

Enterprise Imaging Acquisition Protocols Needed?

If we consider the different ways that images can be captured (still, video), the subject in frame (cropping, zooming), lighting, etc., and the ability to capture a single image or a set of images, do we also need some form of a book of protocols to guide the person acquiring the images? Should certain images contain a ruler (or object of known size) to allow the image to be calibrated for measurements?

The Cost of Doing Nothing

If we consider the impact of not having methods to avoid data entry errors, or not having a common schema, not having common terms, and not even having a common communication protocol or best practices for acquisition workflows, what hope does Enterprise Imaging have?

Even with options for all these things, imaging and information devices are still struggling to be interoperable with departmental and enterprise applications, as described in this Healthcare IT News article, “Nurses blame interoperability woes for medical errors”.

The Future is Now(ish)

This is why the mission and output of the joint HIMSS-SIIM Enterprise Imaging workgroup (charter in PDF here) is so important. The space needs to be better defined, with acquisition workflow practices, data formats, schemas, terms, and protocols outlined.

If we simply try to copy what is done in Radiology into Enterprise Imaging, it will create too much of a burden on the people asked to capture these images, and they won’t do it, frankly. Unlike the reimbursement in Radiology, they often have little incentive to spend the extra time to capture, index and upload images to the EMR when they are focused on the patient.

But, if we ignore the benefits that come with the controls and methods we have developed and matured over the years in Radiology, we risk having to re-learn all the same lessons again. And that would be very sad (and expensive, and wasteful, and unsafe…).

Add on top of all this the increasing need to share this data across different enterprises for continuity of care and the importance of interoperable data portability/liquidity is critical.

The fundamental healthcare informatics knowledge and business analysis skills developed by imaging informatics professionals, through on-the-job experience and membership in educational/research societies like SIIM, will be important in determining the right mix of proven concepts that apply, and new methods and innovations. Without a supply of talent to foster the change, nothing will change.

In Conclusion…

When dealing with such an undefined space, people often relish the idea of “doing it right this time”. I would urge anyone involved in this space to reflect on what has been accomplished in mature fields like Radiology, as there are a lot of “right things” that we may be taking for granted. With a little modernization, we can still get continued value out of what we have already achieved.

Article – SIIM: Experiment in web technologies points to future of health IT

Here is an article summarizing the way Cleveland Clinic is using REST-based APIs to solve real problems in their institution. Taken from a talk given by Mat Coolidge at the SIIM 2014 Annual Meeting.

Article – SIIM Hackathon gives DICOMweb a coming-out party

Check out this article in Radiology Business Journal on the recently concluded Hackathon at the SIIM 2014 Annual Meeting in Long Beach, California.

Here are my other observations on SIIM 2014, in case you missed it.

New JDI Article Published – Informatics Challenges—Lossy Compression in Medical Imaging

An article I co-authored with Kinson Ho on the implications on informatics and information management when applying lossy compression to medical images in DICOM has been published. Check it out here.

It also explores whether wavelet-based compression (e.g. JPEG2000) still provides the value that it once promised. A comparison of different approaches to preserve system and network resources is included.

It is available in Journal of Digital Imaging.

Webinar – Separating PACS Servers from VNA…and then Connecting Them

I will be doing a Webinar on the differences between your PACS server and a VNA, as well as what to look for in a VNA (and in your PACS when connecting it to a VNA), on May 20, 2014 at 1 pm ET. We will have time for some Q&A, so it should be a good session.

Registration is free. Sign up here.

Article – The time is now for deconstructed PACS

Here is another article (on Aunt Minnie; you likely need an account to access, but it’s free) predicting the deconstruction of PACS (and workflow management systems, like RIS). This mirrors many of the same predictions made in the article titled PACS 2018: An Autopsy, published in JDI recently.

The author’s observations on the lack of recent innovation in PACS is likely attributable to the saturation of PACS in mature markets. Would you invest the same amount in R&D on PACS in today’s environment as you would before the PACS “gold rush” of the mid-2000’s? I touched on this in a blog post a year ago after attending the SIIM 2013 Annual Meeting.

Article – Imaging and radiology paves the way for industry adoption of open source

Check out this article by my friend, Gorkem Sevinc, on open source software in imaging informatics. Remember to check out the Open Source Plugfest and the Hackathon at SIIM 2014 in Long Beach California.

SIIM 2014 Hackathon – Registration Details

I am co-chairing the first Hackathon at the SIIM 2014 Annual Meeting along with Chris Meenan. Check out participation details here.

If the initial interest expressed is any indication, it is going to be an awesome event. I hope that you can join us.

JDI Article Published – REST Enabling the Report Template Library

I contributed to an article recently published in the Journal of Digital Imaging. The primary author is Brad Genereaux (@IntegratorBrad). His blog is here.

This article examines the use of a REST API to discover, retrieve and use structured radiology report templates from an on-line report repository.

Check it out and let me know what you think.